

Monday 27 June 2016 – Morning

A2 GCE MATHEMATICS

4726/01 Further Pure Mathematics 2

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

- Printed Answer Book 4726/01
- List of Formulae (MF1)

Duration: 1 hour 30 minutes

Other materials required: • Scientific or graphical calculator

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. If additional space is required, you should use the lined page(s) at the end of the Printed Answer Book. The question number(s) must be clearly shown.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

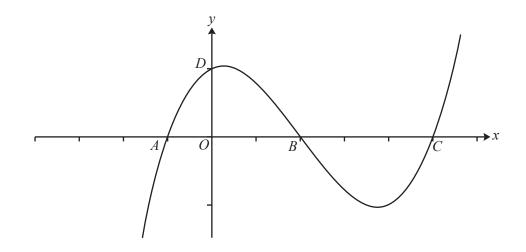
- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is **72**.
- The Printed Answer Book consists of **20** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

Answer all the questions.

- 1 (i) By first expanding $(e^x + e^{-x})^3$, or otherwise, show that $\cosh 3x \equiv 4 \cosh^3 x 3 \cosh x$. [4]
 - (ii) Solve the equation $\cosh 3x = 6 \cosh x$, giving your answers in exact logarithmic form. [5]
- 2 It is given that $f(x) = \frac{x(x-1)}{(x+1)(x^2+1)}$. Express f(x) in partial fractions and hence find the exact value of $\int_0^1 f(x) dx$. [6]
- 3 The diagram shows the curve y = f(x). Points *A*, *B*, *C* and *D* on the curve have coordinates (-1, 0), (2, 0), (5, 0) and (0, 2) respectively.



On the copy of this diagram in the Printed Answer Book, sketch the curve $y^2 = f(x)$, giving the coordinates of the points where the curve crosses the axes. [5]

- 4 You are given the equation $(2x-1)^2 e^x = 0$.
 - (i) Verify that 0 is a root of the equation.

There are also two other roots, α and β , where $0 < \alpha < \beta$.

- (ii) The iterative formula $x_{r+1} = \ln(2x_r 1)^2$ is to be used to find a root of the equation.
 - (a) Sketch the line y = x and the curve $y = \ln(2x-1)^2$ on the same axes, showing the roots 0, α and β . [3]
 - (b) By drawing a 'staircase' diagram on your sketch, starting with a value of x that is between α and β , show that this iteration does not converge to α . [1]
 - (c) Using this iterative formula with $x_1 = 3.75$, find the value of β correct to 3 decimal places. [3]
- (iii) Using the Newton-Raphson method with $x_1 = 1.6$, find the root α of the equation $(2x-1)^2 e^x = 0$ correct to 5 significant figures. Show the result of each iteration. [4]
- 5 It is given that $y = \tan^{-1} 2x$.

(i) Find
$$\frac{dy}{dx}$$
 and show that $\frac{d^2y}{dx^2} + 4x \left(\frac{dy}{dx}\right)^2 = 0.$ [3]

- (ii) Find the Maclaurin series for y up to and including the term in x^3 . Show all your working. [4]
- (iii) The result in part (ii), together with the value $x = \frac{1}{2}$, is used to find an estimate for π . Show that this estimate is only correct to 1 significant figure. [2]

[1]

- 6 The equation of a curve in polar coordinates is $r = \sin 5\theta$ for $0 \le \theta \le \frac{1}{5}\pi$.
 - (i) Sketch the curve and write down the equations of the tangents at the pole. [4]
 - (ii) The line of symmetry meets the curve at the pole and at one other point *A*. Find the equation of the line of symmetry and the cartesian coordinates of *A*.
 - (iii) Find the area of the region enclosed by this curve.
- 7 (i) By using a set of rectangles of unit width to approximate an area under the curve $y = \frac{1}{x}$, show that $\sum_{x=1}^{\infty} \frac{1}{x}$ is infinite. [4]
 - (ii) By using a set of rectangles of unit width to approximate an area under the curve $y = \frac{1}{x^2}$, find an upper limit for the series $\sum_{x=1}^{\infty} \frac{1}{x^2}$. [5]
- 8 It is given that $I_n = \int_0^{\frac{1}{4}\pi} \sec^n x \, dx$ where *n* is a positive integer.
 - (i) By writing $\sec^n x = \sec^{n-2} x \sec^2 x$, or otherwise, show that

$$(n-1)I_n = (\sqrt{2})^{n-2} + (n-2)I_{n-2} \text{ for } n > 1.$$
[5]

[4]

[4]

(ii) Show that
$$I_8 = \frac{96}{35}$$
. [3]

(iii) Prove by induction that I_{2n} is rational for all values of n > 1.

END OF QUESTION PAPER

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

opportunity.

Q	Question		Answer		Guidance	
1	(i)		$(e^{x} + e^{-x})^{3} = e^{3x} + 3e^{x} + 3e^{-x} + e^{-3x}$	M1	Doing the expansion	
			$= (e^{3x} + e^{-3x}) + 3(e^{x} + e^{-x})$	A1		
			$\Rightarrow (2\cosh x)^3 = 2\cosh 3x + 6\cosh x$	M1	Relating cosh3 <i>x</i> to exponentials correctly	
			$\Rightarrow 8\cosh^3 x = 2\cosh 3x + 6\cosh x$	A1		
			$\Rightarrow \cosh 3x = 4 \cosh^3 x - 3 \cosh x$	[4]		
	(ii)		$\Rightarrow \cosh 3x = 4 \cosh^3 x - 3 \cosh x = 6 \cosh x$	M1	Using result of (i)	
			$\Rightarrow 4 \cosh^3 x = 9 \cosh x$			
			$\Rightarrow \cosh^2 x = \frac{9}{4}$ since $\cosh x \neq 0$	A1	At least one rejection needs to be stated. Or $coshx \ge 1$	
			$\Rightarrow \cosh x = (\pm)\frac{3}{2} \qquad \cosh x \neq -\frac{3}{2}$	A1		
			$\Rightarrow x = \pm \ln\left(\frac{3}{2} + \sqrt{\left(\frac{3}{2}\right)^2 - 1}\right)$	A1 A1	A1 for each in exact form Deduct from 5 marks 1	
			$=\pm \ln\left(\frac{3}{2} + \frac{1}{2}\sqrt{5}\right)$ or $\ln\left(\frac{3}{2} \pm \frac{1}{2}\sqrt{5}\right)$	[5]	mark for additional incorrect answers	

Question	Answer	Mark	Guida	ance
	Alternative:	M1	Using exponentials	
	$\cosh 3x = 6 \cosh x \Longrightarrow \frac{1}{2} \left(e^{3x} + e^{-3x} \right) = 3 \left(e^{x} + e^{-x} \right)$			
	$\Rightarrow e^{3x} - 6e^{x} - 6e^{-x} + e^{-3x} = 0 \Rightarrow e^{6x} - 6e^{4x} - 6e^{2x} + 1 = 0$			
	$\operatorname{let} y = \mathrm{e}^{2x}$	A1	Cubic in factorised form	
	$\Rightarrow y^3 - 6y^2 - 6y + 1 = 0 \Rightarrow (y+1)(y^2 - 7y + 1) = 0$	AI		
		A1	Rejection of $y = -1$ must	
	$\Rightarrow y = -1, \frac{7 \pm \sqrt{45}}{2}$	A1	be stated.	
	$\begin{bmatrix} 2 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\$		oe in exact form	
	$e^{2x} \neq -1 \Rightarrow e^{2x} = \frac{7 \pm \sqrt{45}}{2} \Rightarrow x = \frac{1}{2} \ln\left(\frac{7 \pm \sqrt{45}}{2}\right) = \frac{1}{2} \ln\left(\frac{7 \pm 3\sqrt{5}}{2}\right)$		Deduct from 5 marks 1	
			mark for additional	
			incorrect answers	

Question	Answer		Guidance	
2	$f(x) = \frac{x(x-1)}{(x+1)(x^2+1)} \equiv \frac{A}{(x+1)} + \frac{Bx+C}{(x^2+1)}$	M1	Correct partial fractions	
	$\Rightarrow A(x^{2}+1) + (Bx+C)(x+1) \equiv x(x-1)$ For e.g. equate coefficients $\Rightarrow A+B=1, B+C=-1, A+C=0$	M1	Dep on 1st M	Or sub values of <i>x</i> or division
	$\Rightarrow A = 1, B = 0, C = -1$ $\Rightarrow (f(x)) = \frac{1}{(x+1)} - \frac{1}{(x^2+1)}$	A1	Dep on both M marks.	
	$\Rightarrow \int_{0}^{1} f(x) dx = \int_{0}^{1} \left(\frac{1}{(x+1)} - \frac{1}{(x^{2}+1)} \right) dx$	B1	ft for integrating 1st term correctly $(A/(x + 1) A \neq 0)$	
	$= \left[\ln(1+x) - \tan^{-1}x \right]_{0}^{1} = \ln 2 - \frac{\pi}{4}$	B1 B1	ft for subsequent term(s) correctly in exact form as dep on both previous B marks	
		[6]		

4726

Question	Answer	Mark	Guidance	
3		B1	Symmetric but not for reflecting original curve	
		B1	Both ranges only and nothing more	
		B1	All parts cut <i>x</i> -axis at 90 ⁰	
	(-1, 0), (2, 0), (5, 0) $(0, \sqrt{2}), (0, -\sqrt{2})$	B1 B1	Both parts cut original curve at <i>y</i> = <i>k</i> and central part "egg shaped" <i>k</i> only approximately 1 All 5points given!	Approximate consistency
		[5]		

Q	Question		Answer	Mark	Guid	lance
4	(i)		$x = 0$ in equation satisfies as $e^0 = 1$.	B1 [1]		
	(ii)	(a)		B1 B1	Asymptote between <i>x</i> = 0 and where it crosses <i>x</i> axis . +ve roots clear	Allow one branch.
				B1 [3]	LH branch going through origin LH branch does not have to be complete	SC1 $y = (\ln(2x-1))^2$
		(b)	Staircase seen near middle root to be converging to β .	B1 [1]	Either starting point shown with vertical line from axis to curve or arrows on staircase lines	Follow through their curve where there are two positive roots
	(ii)	(C)	$x_1 = 3.75$ $x_2 = 3.743604$ Leading to 3.733	B3 [3]	For correct answer B2 for 3.734 B1 for sight of 3.7436	
	(iii)		$f(x) = (2x-1)^2 - e^x$ $\Rightarrow f'(x) = 4(2x-1) - e^x$ $\Rightarrow x_{r+1} = x_r - \frac{(2x-1)^2 - e^x}{4(2x-1) - e^x}$	B1 M1 A1	f'(x) correct soi by x_2 Use of formula soi by x_2 x_2 to 2dp or better	f(x) correct and their f'(x)
			$\Rightarrow x_2 = 1.629382, x_3 = 1.629053$ Root = 1.6291	A1 [4]	Correct root stated to 5sf	At least 2 iterates shown

Q	uesti	on	Answer	Mark	Guid	ance
5	(i)		$\frac{dy}{dx} = \frac{2}{1+4x^2}$ $\frac{d^2y}{dx^2} = -2\left(1+4x^2\right)^{-2} \times 8x = \frac{-16x}{\left(1+4x^2\right)^2} = -4x\left(\frac{dy}{dx}\right)^2$	B1 M1 A1	For first diffn Diffn again and making comparison	
	()			[3]		
	(ii)		When $x = 0$, $y = 0$, $\frac{dy}{dx} = 2$, $\frac{d^2y}{dx^2} = 0$	B1	Soi by final answer	See below for alternative differentiation.
			$\Rightarrow \frac{d^3 y}{dx^3} + 4\left(\frac{dy}{dx}\right)^2 + 8x\left(\frac{dy}{dx}\right)\frac{d^2 y}{dx^2} = 0$	M1	Differentiate the equation given	
			When $x = 0$, $\frac{d^3 y}{dx^3} + 16 = 0$	A1	For – 16 www	SC4 Final formula from formula book including sight of $(2x)^3$
			$\Rightarrow (y) = 2x - \frac{8x^3}{3}$	A1	Final answer	SC2 if final form only seen (i.e. no working) SC0 if final form only and wrong
				[4]		
	(iii)		$x = \frac{1}{2} \Longrightarrow \tan^{-1} 1 = \frac{\pi}{4}$	B1	soi	
			In series $x = 1 - \frac{1}{3} = \frac{2}{3}$			
			\Rightarrow Estimate for $\pi = \frac{8}{3} = 2.666$	B1	For showing to 1sf $\pi = 3$ which is correct but to 2sf	
			which, correct to $1sf$, = 3	[2]	π = 2.7 which is not. www	

4726

Q	uestion	Answer	Mark	Guidance	
		Alternative differentiation:		M1 is for two terms on top	
		$y'' = \frac{-16x}{(1+4x^2)^2} \Longrightarrow y''' = \frac{-16(1+4x^2)^2 + 256(1+4x^2)x^2}{(1+4x^2)^4}$			
		or $y'' = -16x(1+4x^2)^{-2} \Rightarrow y''' = 256x^2(1+4x^2)^{-3} - 16(1+4x^2)^{-2}$		M1 is for 2 terms	

4726

Quest	ion	Answer	Mark	Guid	lance
6 (i)			B1 B1 B1 B1 [4]	Single enclosed loop in 1st quadrant tangent at origin (not necessarily seen) less than $\theta = \frac{\pi}{4}$ $\theta = \frac{\pi}{5}$ stated $\theta = 0$ stated -1 any extra "tangents" if 2 are correct	
(ii)		$\theta = \frac{\pi}{10},$ $x = r \cos \theta = \cos \frac{\pi}{10} (\approx 0.951)$ $y = r \sin \theta = \sin \frac{\pi}{10} (\approx 0.309)$	B1 B1 [2]	For θ . Allow cartesian $y = \left(\tan \frac{\pi}{10}\right)x$ For both <i>x</i> and <i>y</i> . Allow decimal values to 3sf or better	
(iii)		$A = \frac{1}{2} \int_{0}^{\frac{\pi}{5}} r^{2} d\theta = \frac{1}{2} \int_{0}^{\frac{\pi}{5}} \sin^{2} 5\theta d\theta$ $= \frac{1}{4} \int_{0}^{\frac{\pi}{5}} (1 - \cos 10\theta) d\theta = \frac{1}{4} \left[\theta - \frac{1}{10} \sin 10\theta \right]_{0}^{\frac{\pi}{5}}$ $= \frac{1}{4} \left(\frac{\pi}{5} - \frac{1}{10} \sin 2\pi \right) = \frac{\pi}{20}$	M1 M1 A1 A1 [4]	Correct formula for area with correct limits Correct method to get integrand Dep on 2nd M Integral – ignore limits	or $A = \int_{0}^{\pi/10} r^2 \mathrm{d}\theta$

Questi	on	Answer	Mark	Guidance		
7 (i)		onstruct rectangles from $x = 1$ of height y to n or ∞	M1	Or sum from 1 to <i>n</i> soi	Or to <i>n</i> - 1	
		um of areas of rectangles $=\frac{1}{1}+\frac{1}{2}+=\sum_{1}^{\infty}\frac{1}{x}$ his area is bigger than the area under the curve	A1	from diagram For sum and inequality stated or implied by diagram	Condone comparison of areas for 1 to <i>n</i> and 1 to <i>n</i> - 1	
		$l = \int_{1}^{\infty} \frac{1}{x} dx = \left[\ln x \right]_{1}^{\infty} = \infty$ ince Sum > A, the sum is infinite.	B1 A1 [4]	Integral from 1 to <i>n</i> +1or ∞ Conclusion	If <i>n</i> - 1 above then this integral to <i>n</i>	
(ii)		onstruct rectangles from $x = 2$ to the left of height y to n	M1	Rectangles must be under curve	May include the rectangle from $x= 1$ to the left	
		um of areas of rectangles $=\frac{1}{2^2} + \frac{1}{3^2} + = \sum_{2}^{\infty} \frac{1}{x^2}$ his area is less than the area under the curve $t = \int_{1}^{\infty} \frac{1}{x^2} dx = \left[-\frac{1}{x}\right]_{1}^{\infty} = 01 = 1$ ince Sum < A,	A1 B1	For sum and inequality stated or implied by diagram Area under curve		
	=	$\frac{1}{2^{2}} + \frac{1}{3^{2}} + = \sum_{2}^{\infty} \frac{1}{x^{2}} < 1$ $\Rightarrow \sum_{1}^{\infty} \frac{1}{x^{2}} < 1 + 1$ pper limit = 2	M1 A1 [5]	For adding 1 to both sides, may appear earlier		

Q	uesti	on	Answer	Mark	Guidance
8	(i)		$I_n = \int_0^{\pi/4} \sec^n x \mathrm{d}x$		
			$u = \sec^{n-2} x \qquad dv = \sec^2 x dx$	M1	Attempt at integration by parts with correct <i>u</i> and
			$du = (n-2)\sec^{n-3} x \cdot \sec x \tan x dx \qquad v = \tan x$		V'
			$\Rightarrow I_n = \left[\sec^{n-2} x \tan x\right]_0^{\frac{\pi}{4}} - \int_0^{\frac{\pi}{4}} (n-2) \sec^{n-3} x \cdot \sec x \tan x \cdot \tan x dx$	A1	" <i>uv</i> " term must be seen
			$= \left(\sqrt{2}\right)^{n-2} - (n-2) \int_{0}^{\frac{\pi}{4}} \sec^{n-2} x \cdot \tan^{2} x \cdot dx$	A1	Evaluating the first term
			$= \left(\sqrt{2}\right)^{n-2} - (n-2) \int_{0}^{\frac{n}{4}} \sec^{n-2} x \left(\sec^{2} x - 1\right) dx$	M1	Dep on 1st M Splitting integral using
			$= \left(\sqrt{2}\right)^{n-2} - (n-2)\left(I_n - I_{n-2}\right) \Longrightarrow (n-1)I_n = \left(\sqrt{2}\right)^{n-2} + (n-2)I_{n-2}$	A1 [5]	$\tan^2 x = \sec^2 x - 1$
	(ii)		$I_8 = \frac{1}{7} \left(2^3 + 6I_6 \right) = \frac{1}{7} \left(2^3 + 6 \cdot \frac{1}{5} \left(2^2 + 4I_4 \right) \right)$	B1	Correct statement of formula seen anywhere
			$=\frac{1}{7}\left(2^{3}+6.\frac{1}{5}\left(2^{2}+4.\frac{1}{3}\left(2+2I_{2}\right)\right)\right)$		
			$=\frac{1}{7}\left(8+\frac{6}{5}\left(4+\frac{16}{3}\right)\right)=\frac{1}{7}\left(8+\frac{6}{5}\cdot\frac{28}{3}\right)$	B1	Substitution of I_2 seen oe
				B1	Conclusion
			$=\frac{1}{7} \cdot \frac{96}{5} = \frac{96}{35}$ Alternative:		B1 for I_2 B1 For I_4 and I_6 B1
			$I_2 = 1$ $I_4 = \frac{4}{3}$ $I_6 = \frac{28}{15} \Longrightarrow I_8 = \frac{96}{35}$	[3]	

Question	Answer	Mark	Guid	lance
(iii)	$I_2 = 1$ (which is rational). (Therefore I_{2n} is rational for $n = 1$).	B1	Allow $n = 2$	
	Let I_{2k} be rational for some value of k Then $I_{2(k+1)} = \frac{1}{(2k+1)} \left(\sqrt{2}^{2k} + 2kI_{2k} \right) = \frac{1}{(2k+1)} \left(2^k + 2kI_{2k} \right)$	M1	For statement plus reduction formula and begin to look at the $\sqrt{2}$ term	Assume true for <i>n</i> = <i>k</i>
	Statement that this is rational and must include $\sqrt{2}^{2k} = 2^k$ is rational So if I_{2k} is rational then $I_{2(k+1)}$ is rational.	A1 A1	Reduction formula must be correct	
	But I_2 is rational so I_{2k} is rational for all $n = k$	[4]		