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Answer all the questions.

1	 (i)	 By first expanding ( )e ex x 3+ - , or otherwise, show that cosh cosh coshx x x3 4 3
3/ - . [4]

	 (ii)	 Solve the equation cosh coshx x3 6= , giving your answers in exact logarithmic form. [5]

2	 It is given that ( )
( ) ( )

( )
f x

x x
x x
1 1

1
2

=
+ +

-
. Express ( )f x  in partial fractions and hence find the exact 

 
value of ( )f dx x

0

1

; . [6]

3	 The diagram shows the curve ( )fy x= . Points A, B, C and D on the curve have coordinates (−1, 0), (2, 0), 
(5, 0) and (0, 2) respectively.

x

y

CB

D

OA

	 On the copy of this diagram in the Printed Answer Book, sketch the curve ( )fy x2 = , giving the coordinates 
of the points where the curve crosses the axes. [5]
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4	 You are given the equation ( ) ex2 1 0x2- - = .

	 (i)	 Verify that 0 is a root of the equation. [1]

	 There are also two other roots, a and b, where 0 1 1a b.

	 (ii)	 The iterative formula ( )lnx x2 1r r1

2= -
+

 is to be used to find a root of the equation.

	 	 (a)	 Sketch the line y x=  and the curve ( )lny x2 1 2= - 	 on the same axes, showing the roots
0, a and b. [3]

	 	 (b)	 By drawing a ‘staircase’ diagram on your sketch, starting with a value of x that is between
a and b, show that this iteration does not converge to a. [1]

	 	 (c)	 Using this iterative formula with .x 3 75
1
= , find the value of b correct to 3 decimal places. [3] 

	 (iii)	 Using the Newton-Raphson method with .x 1 6
1
= , find the root a of the equation ( ) ex2 1 0x2- - =

correct to 5 significant figures. Show the result of each iteration. [4]

5	 It is given that tany x21= - .

	 (i)	 Find d
d
x
y

 and show that 
d

d

d

d

x
y

x x
y

4 0
2

2 2

+ =c m . [3]

	 (ii)	 Find the Maclaurin series for y up to and including the term in x3. Show all your working. [4]

	 (iii)	 The result in part (ii), together with the value x
2

1
= , is used to find an estimate for r. Show that this 

estimate is only correct to 1 significant figure. [2]
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6	 The equation of a curve in polar coordinates is sinr 5i=  for 0
5

1
G Gi r .

	 (i)	 Sketch the curve and write down the equations of the tangents at the pole. [4]
 
	 (ii)	 The line of symmetry meets the curve at the pole and at one other point A. Find the equation of the line 

of symmetry and the cartesian coordinates of A. [2] 

	 (iii)	 Find the area of the region enclosed by this curve. [4]

7	 (i)	 By using a set of rectangles of unit width to approximate an area under the curve y x
1

= , show
 
that x

1
x 1

3

=

/  is infinite. [4]

	 (ii)	 By using a set of rectangles of unit width to approximate an area under the curve y
x
1

2
= , find an 

 
upper limit for the series 

x
1

x
2

1

3

=

/ . [5]

8	 It is given that sec dI x xn
n

0

1

4
=

r

;  where n is a positive integer.

	 (i)	 By writing	sec sec secx x xn n 2 2= - , or otherwise, show that

    ( ) ( ) ( )n I n I1 2 2n
n

n
2

2
- = + --

-
 for n 12 . [5]

	 (ii)	 Show that I
35

96

8
= . [3]

 (iii)	 Prove by induction that I n2  is rational for all values of n 12 . [4]

END	OF	QUESTION	PAPER
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Question Answer Mark Guidance 
1 (i) ( ) 

( ) ( ) 
( ) 

3 3 3 

3 3 

3 

3 

3 

e + e e +3e +3e +e 

e  e  3 e  e  

2cosh 2cosh 3 6cosh 

8cosh 2cosh 3 6cosh 
cosh 3 4cosh 3cosh 

x x x x x x 

x x x x 

x x x 

x x x 

x x x 

− − − 

− − 

= 

= + + + 

⇒ = + 

⇒ = + 

⇒ = − 

M1 

A1 

M1 

A1 

[4] 

Doing the expansion 

Relating cosh3x to 
exponentials correctly 

(ii) 

( ) 

3 

3 

2 

2 

cosh 3 4cosh 3cosh 6cosh 
4cosh 9cosh 

9 cosh  since cosh 0 
4 

3 3 cosh cosh 
2 2 

3 3ln 1 
2 2 

3 1  3 1ln 5  or ln 5 
2 2  2 2  

x x x x 

x x 

x x 

x x 

x 

⇒ = − = 

⇒ = 

⇒ = ≠ 

⇒  = ±  ≠ −  

   ⇒ = ±  +   −
    

    = ± + ±   
    

M1 

A1 

A1 

A1 
A1 

[5] 

Using result of (i) 

At least one rejection 
needs to be stated. 
Or coshx ≥ 1 

A1 for each in exact form 
Deduct from 5 marks 1 
mark for additional 
incorrect answers 
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Question Answer Mark Guidance 
Alternative: 

( ) ( ) 

( )( ) 

3 3 

3 3 6 4 2 

2 

3 2 2 

2 2 

1 cosh 3 6 cosh e e 3 e e 
2 

e 6e 6e e 0 e 6e 6e 1 0 
let e 

6  6  1 0  1  7  1  0  

7 451, 
2 

7 45 1 7 45 1 7 3 5 e 1 e ln ln 
2 2 2 2 2 

x x x x 

x x x x x x x 

x 

x x 

x x 

y 

y y y y y y 

y 

x 

− − 

− − 

= ⇒ + = + 

⇒ − − + = ⇒ − − + = 

= 

⇒  −  −  + =  ⇒  +  −  +  =  

±
⇒ = −  

   ± ± ±
≠ − ⇒  =  ⇒  =  =   

    

M1 

A1 

A1 

A1 
A1 

Using exponentials 

Cubic in factorised form 

Rejection of y = −1 must 
be stated. 

oe in exact form 
Deduct from 5 marks 1 
mark for additional 
incorrect answers 
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Question Answer Mark Guidance 
2 

( ) 

2 2 

2 

2 

( 1)f (  )  
( 1)( 1) ( 1) ( 1) 

( 1) ( )( 1) ( 1) 
For e.g. equate coefficients 

1, 1, 0 
1, 0, 1 

1 1f (  )  
( 1) ( 1) 

x x A Bx C x 
x x x x 

A x Bx C x x x 

A B  B C  A C  

A B C 

x 
x x 

− + 
= ≡ + 

+ + + + 

⇒  + +  +  + ≡  −  

⇒ + =  + = −  + =  

⇒ =  =  = −  

⇒ = − 
+ + 

1 1 

2 
0 0 

11 

0 

1 1f ( )d d 
( 1) ( 1) 

ln(1 ) tan ln 2 
4 

x x  x  
x x 

x x 
π− 

 
⇒ = − + +  

 =  + −  =  −  

∫ ∫ 

M1 

M1 

A1 

B1 

B1 

B1 

[6] 

Correct partial fractions 

Dep on 1st M 

Dep on both M marks. 

ft for integrating 1st term 
correctly  (A/(x + 1)  A ≠0) 

ft for subsequent term(s) 
correctly 
in exact form as dep on 
both previous B marks 

Or sub values of x or 
division 
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Question Answer Mark Guidance 
3 

(-1, 0), (2, 0), ( 5, 0)

( ) ( )0, 2 , 0, 2− 

B1 

B1 

B1 

B1 

B1 

[5] 

Symmetric but not for 
reflecting original curve 

Both ranges only and 
nothing more 

All parts cut x-axis at 900 

Both parts cut original 
curve at y = k and central 
part "egg shaped" 
k only approximately 1 
All 5points given! 

Approximate consistency 
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Question Answer Mark Guidance 
4 (i) x = 0 in equation satisfies as e0 = 1. B1 

[1] 
(ii) (a) B1 Asymptote between x = 0 Allow one branch. 

α 
β 

B1 

and where it crosses x 
axis . 
+ve roots clear 

B1 LH branch going through 
origin 
LH branch does not have 
to be complete 

SC1 ( )2ln(2 1)y x= − 

[3] 
) (b) Staircase seen near middle root to be converging to β. B1 

[1] 

Either starting point 
shown with vertical line 
from axis to curve or 
arrows on staircase lines 

Follow through their curve 
where there are two 
positive roots 

(ii) (c) 
x1 = 3.75 

x2 = 3.743604... 
Leading to 3.733 

B3 

[3] 

For correct answer 
B2 for 3.734 
B1 for sight of 3.7436... 

(iii) 2( ) (2 1) xf x  x  e=  −  −  B1 f'(x) correct soi by x2 

'( ) 4(2 1) xf x  x  e⇒  =  − −  
M1 Use of formula soi by x2 f(x) correct and their f'(x) 

2 

1 
(2 1) 
4(2 1) 

x 

r r x 

x e x x 
x e+ 

−  −  
⇒  =  −  

− −  

A1 x2 to 2dp or better 

2 31.629382......., 1.629053x x⇒ = = A1 Correct root stated to 5sf At least 2 iterates shown 
Root = 1.6291 

[4] 
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Question Answer Mark Guidance 
5 (i) 

( ) 
( ) 

2 

22 22 
22 2 

d 2 
d 1 4 
d 16 d2 1  4  8  4  
d d1 4 

y 

x x 

y x yx x x 
x xx 

− 

= 
+ 

−     = −  +  ×  =  = −    
    + 

B1 

M1 

A1 

[3] 

For first diffn 

Diffn again and making 
comparison 

(ii) 2 

2 

d dWhen 0, 0, 2, 0 
d d 
y yx y 
x x 

= = = = 

23 2 

3 2 

3 

3 

3 

d d d d4 8 0 
d d d d 

dWhen 0, 16 0 
d 
8(  )  2  
3 

y y y yx 
x x x x 

yx 
x 

x y x 

        ⇒ + + =        
        

=  +  =  

⇒ = − 

B1 

M1 

A1 

A1 

[4] 

Soi by final answer 

Differentiate the equation 
given 

For − 16 www 

Final answer 

See below for alternative 
differentiation. 

SC4 Final formula from 
formula book including 
sight of (2x)3 

. 
SC2 if final form only 
seen (i.e. no working) 
SC0 if final form only and 
wrong 

(iii) 11 tan 1 
2 4 

1 2In series 1 
3 3  

8Estimate for 2.666.... 
3 

which, correct to 1sf,  = 3 

x 

x 

π 

π 

−= ⇒  =  

= − =  

⇒  = =  

B1 

B1 

[2] 

soi 

For showing to 1sf π = 3 
which is correct but to 2sf 
π = 2.7 which is not. www 

11
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Question Answer Mark Guidance 
Alternative differentiation: 

2 2  2  2  

2 2  2 4  

2 2 2 2 3 2 2 

16 16(1 4 ) 256(1 4 )'' ''' 
(1 4 ) (1 4 ) 

or 
'' 16 (1 4 ) ''' 256 (1 4 ) 16(1 4 ) 

x x x x y y
x x 

y x x y x x x− − − 

− − + + + 
= ⇒ = 

+ + 

=  −  +  ⇒  =  +  −  +  

M1 is for two terms on top 

M1 is for 2 terms 

12
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Question Answer Mark Guidance 
6 (i) B1 Single enclosed loop in 

B1 1st quadrant 
tangent at origin (not 
necessarily seen) less 

B1 than 
4 
πθ = 

B1 
5 
πθ = stated 

θ 0= stated 
−1 any extra "tangents" if 

[4] 2 are correct 
(ii) 

( ) 

( ) 

,
10 

cos cos 0.951 
10 

sin sin 0.309 
10 

x r  

y r  

πθ 

πθ 

πθ 

= 

= = ≈ 

= = ≈ 

B1 

B1 

[2] 

For θ . Allow cartesian 

tan 
10

y x 
π  =  

  

For both x and y . Allow 
decimal values to 3sf or 
better 

(iii) 

( ) 

5 5 
2 2 

0 0 

5 5 

00 

1 1d sin 5 d 
2 2 

1 1 11 cos10 d sin10 
4 4 10 

A r 

π π 

π π 

θ  θ θ  

θ θ  θ  θ  

= = 

  = − =  −   

∫ ∫ 

∫ 

M1 

M1 

A1 

Correct formula for area 
with correct limits 

Correct method to get 
integrand 

or 
10 

2 

0 

dA r 

π 

θ= ∫ 

1 1 sin 2 
4 5 10 20 

π ππ  = − = 
  

A1 Dep on 2nd M Integral – 
ignore limits 

[4] 
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7 (i) Construct rectangles from x = 1 of height y to n or ∞ 

Sum of areas of rectangles 
1 

1 1  1  ... 
1 2  x 

∞ 

= + + = ∑ 
This area is bigger than the area under the curve 

[ ]1 
1 

1 d lnA x x 
x 

∞ 
∞ = = = ∞∫ 

Since Sum > A, the sum is infinite. 

M1 

A1 

B1 
A1 

[4] 

Or sum from 1 to n soi 
from diagram 

For sum and inequality 
stated or implied by 
diagram 

Integral from 1 to n +1or 
∞ 
Conclusion 

Or to n - 1 

Condone comparison of 
areas for 1 to n and 1 to 
n - 1 

If n- 1 above then this 
integral to n 

(ii) Construct rectangles from x = 2 to the left of height y to n 
or ∞ 

Sum of areas of rectangles 2 2 2 
2 

1 1 1 ... 
2 3 x 

∞ 

=  +  + = ∑ 
This area is less than the area under the curve 

2 
11 

1 1d 0 1 1A x 
x x 

∞∞     =  = −  = − − =      ∫ 
Since Sum < A , 

2 2 2 
2 

2 
1 

1 1 1 ... 1 
2 3 

1 1 1  

x 

x 

∞ 

∞ 

+  + =  <  

⇒  < +  

∑ 

∑ 
Upper limit = 2 

M1 

A1 

B1 

M1 

A1 
[5] 

Rectangles must be 
under curve 

For sum and inequality 
stated or implied by 
diagram 

Area under curve 

For adding 1 to both 
sides, may appear earlier 

May include the rectangle 
from x= 1 to the left 

14
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8 (i) 4 

0 

sec dn 
nI  x x  

π 

= ∫ 
2 2 

3 

sec d sec d 
d ( 2)sec .sec tan d tan 

n 

n 

u  x  v  x x  

u  n  x  x  x x  v  x  

− 

− 

= = 

= − = 

M1 Attempt at integration by 
parts with correct u and 
v' 

4 
2 34 

0 
0 

sec tan ( 2)sec .sec tan . tan dn n 
nI  x  x  n  x  x  x  x x  

π 
π

− − ⇒ = − −  ∫ 
A1 

"uv" term must be seen 

( ) 
42 

2 2 

0 

2 ( 2) sec . tan .d 
n 

nn  x  x  x  

π 
− 

−= − − ∫ 
A1 

Evaluating the first term 

( ) ( ) 

( ) 

42 
2 2 

0 
2 

2 ( 2) sec sec 1 .d 

2 ( 2) 

n n 

n 

n n 

n x x x 

n I I 

π 
− 

− 

− 

− 

= − − − 

= − − − 

∫ 

( ) ( ) 2 

2 2( 1) 2 ( 2) 
n 

n nn I n I 
− 

−⇒ − = + − 

M1 

A1 

[5] 

Dep on 1st M Splitting 
integral using 

2 2tan sec 1x x= − 

(ii) 
( ) ( ) 

( ) 

3 3 2 
8 6 4 

3 2 
2 

1 1 12  6  2  6.  2  4  
7 7 5 
1 1 12 6. 2 4. 2 2 
7 5 3 

I I I 

I 

  = + = + + 
  

   = + + +     

B1 Correct statement of 
formula seen anywhere 

1 6 16 1 6 28 8 4 8 . 
7 5 3 7 5 3 
1 96 96 . 
7 5 35 

     = + + = +         

= = 

Alternative: 

B1 

B1 

Substitution of I2 seen oe 

Conclusion 

B1  for I2 
B1 For I4 and I6 

2 4 6 8 
4 28 961 
3 15 35 

I I I I= = = ⇒ = 
[3] 

B1 

15
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(iii) I2 = 1 (which is rational). 

(Therefore I2n is rational for n = 1). 

Let I2k be rational for some value of k 
Then 

( ) ( )2 

2( 1) 2 2 
1 12 2 2 2 

(2 1) (2 1) 
k k 

k k kI kI kI 
k k+ = + = + 

+ + 

Statement that this is rational and must include 
2

2 2   is rational 
k k= 

So if I2k is rational then I2(k+1) is rational. 
But I2 is rational so I2k is rational for all n = k 

B1 

M1 

A1 

A1 

[4] 

Allow n = 2 

For statement plus 
reduction formula and 
begin to look at the 

2 term 

Reduction formula must 
be correct 

Assume true for 
n = k 

16
 


